- Formula
- Esempi
- Gas ideali e volumi dei componenti
- esercizi
- Esercizio 1
- Soluzione
- Esercizio 2
- Soluzione
- Riferimenti
La legge di Amagat afferma che il volume totale di una miscela di gas è uguale alla somma dei volumi parziali di ciascun gas che includerebbe, se da solo, la pressione e la temperatura della miscela.
È anche conosciuta come la legge dei volumi parziali o degli additivi e il suo nome è dovuto al fisico e chimico francese Emile Hilaire Amagat (1841-1915), che la formulò per la prima volta nel 1880. È analoga in volume alla legge delle pressioni parziali di Dalton.
L'aria nell'atmosfera e nei palloncini può essere trattata come una miscela di gas ideale, a cui può essere applicata la legge di Amagat. Fonte: PxHere.
Entrambe le leggi valgono esattamente nelle miscele di gas ideali, ma sono approssimate se applicate a gas reali, in cui le forze tra le molecole giocano un ruolo preminente. D'altra parte, quando si tratta di gas ideali, le forze di attrazione molecolare sono trascurabili.
Formula
In forma matematica, la legge di Amagat assume la forma:
V T = V 1 + V 2 + V 3 +…. = ∑ V io (T m , P m )
Dove la lettera V rappresenta il volume, dove V T è il volume totale. Il simbolo di sommatoria funge da notazione compatta. T m e P m sono rispettivamente la temperatura e la pressione della miscela.
Il volume di ciascun gas è V i ed è chiamato volume del componente. È importante notare che questi volumi parziali sono astrazioni matematiche e non corrispondono al volume reale.
Infatti, se lasciassimo solo uno dei gas nella miscela nel contenitore, si espanderebbe immediatamente fino ad occupare il volume totale. Tuttavia la legge di Amagat è molto utile, perché facilita alcuni calcoli nelle miscele di gas, dando buoni risultati soprattutto ad alte pressioni.
Esempi
Le miscele di gas abbondano in natura Per cominciare, gli esseri viventi respirano una miscela di azoto, ossigeno e altri gas in una proporzione inferiore, quindi questa è una miscela di gas molto interessante da caratterizzare.
Ecco alcuni esempi di miscele di gas:
-L'aria nell'atmosfera terrestre, la cui miscela può essere modellata in vari modi, sia come gas ideale che con uno dei modelli per gas reali.
-Motori a gas, che sono a combustione interna, ma invece di usare benzina usano una miscela gas naturale-aria.
-La miscela di monossido di carbonio e anidride carbonica che i motori a benzina espellono attraverso il tubo di scarico.
-La combinazione idrogeno-metano che abbonda nei pianeti giganti gassosi.
Gas interstellare, una miscela composta principalmente da idrogeno ed elio che riempie lo spazio tra le stelle.
-Miscele diversificate di gas a livello industriale.
Naturalmente, queste miscele gassose generalmente non si comportano come gas ideali, poiché le condizioni di pressione e temperatura sono lontane da quelle stabilite in quel modello.
I sistemi astrofisici come il Sole sono tutt'altro che ideali, poiché le variazioni di temperatura e pressione compaiono negli strati della stella e le proprietà della materia cambiano man mano che si evolve nel tempo.
Le miscele di gas vengono determinate sperimentalmente con diversi dispositivi, come l'analizzatore Orsat. Per i gas di scarico esistono analizzatori portatili speciali che funzionano con sensori a infrarossi.
Esistono anche dispositivi che rilevano fughe di gas o sono progettati per rilevare determinati gas in particolare, utilizzati principalmente nei processi industriali.
Figura 2. Analizzatore di gas vecchio stile per rilevare le emissioni dei veicoli, in particolare le emissioni di monossido di carbonio e idrocarburi. Fonte: Wikimedia Commons.
Gas ideali e volumi dei componenti
Importanti relazioni tra le variabili nella miscela possono essere derivate utilizzando la legge di Amagat. Partendo dall'equazione di stato dei gas ideali:
Successivamente, viene risolto il volume di un componente i della miscela, che può quindi essere scritto come segue:
Dove n i rappresenta il numero di moli di gas presenti nella miscela, R è la costante del gas, T m è la temperatura della miscela e P m è la pressione della miscela . Il numero di moli ni è:
Mentre per il mix completo, n è dato da:
Dividendo l'espressione per né per quest'ultimo:
Risolvendo per V i :
Così:
Dove x i è chiamata frazione molare ed è una quantità adimensionale.
La frazione molare è equivalente alla frazione di volume V i / V e si può dimostrare che è anche equivalente alla frazione di pressione P i / P.
Per i gas reali, deve essere utilizzata un'altra equazione di stato appropriata oppure deve essere utilizzato il fattore di compressibilità o il fattore di compressione Z. In questo caso, l'equazione di stato per i gas ideali deve essere moltiplicata per questo fattore:
esercizi
Esercizio 1
La seguente miscela di gas viene preparata per un'applicazione medica: 11 moli di azoto, 8 moli di ossigeno e 1 mole di anidride carbonica. Calcolare i volumi parziali e le pressioni parziali di ogni gas presente nella miscela, se deve avere una pressione di 1 atmosfera in 10 litri.
1 atmosfera = 760 mm Hg.
Soluzione
La miscela è considerata conforme al modello del gas ideale. Il numero totale di moli è:
La frazione molare di ogni gas è:
-Azoto: x Azoto = 11/20
-Ossigeno: x Ossigeno = 8/20
-Anidride carbonica : x Anidride carbonica = 1/20
La pressione e il volume parziale di ciascun gas vengono calcolati rispettivamente come segue:
-Azoto: P N = 760 mm Hg. (11/20) = 418 mm Hg; V N = 10 litri. (11/20) = 5,5 litri.
-Ossigeno: P O = 760 mm Hg (8/20) = 304 mm Hg ;. V N = 10 litri. (8/20) = 4,0 litri.
-Anidride carbonica: P A-C = 760 mm di Hg. (1/20) = 38 mm di Hg; V N = 10 litri. (1/20) = 0,5 litri.
Si può infatti vedere che è vero quanto detto all'inizio: che il volume della miscela è la somma dei volumi parziali:
Esercizio 2
50 moli di ossigeno vengono miscelate con 190 moli di azoto a 25 ° C e un'atmosfera di pressione.
Applicare la legge di Amagat per calcolare il volume totale della miscela, utilizzando l'equazione dei gas ideali.
Soluzione
Sapendo che 25 ºC = 298,15 K, 1 atmosfera di pressione è equivalente a 101325 Pa e la costante dei gas nel Sistema Internazionale è R = 8,314472 J / mol. K, i volumi parziali sono:
In conclusione, il volume della miscela è:
Riferimenti
- Borgnakke. 2009. Fondamenti di termodinamica. 7a edizione. Wiley and Sons.
- Cengel, Y. 2012. Termodinamica. 7a edizione. McGraw Hill.
- Chemistry LibreTexts. Legge di Amagat. Recupero da: chem.libretexts.org.
- Engel, T. 2007. Introduzione alla Fisicochimica: Termodinamica. Pearson.
- Pérez, S. Real gas. Estratto da: depa.fquim.unam.mx.